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A b s t r a c t  

The notion of a Synthetic Precursor/Successor (SPS) is introduced, and an 
algorithm for the generation of all SPSs is given. The recursive algorithm is based 
on the so-called "stabilization" of a reaction center with respect to the whole 
synthon. The notion of the immersion of a subsynthon into a synthon and the 
notion of the order of SPSs are introduced. A mathematical theory of SPSs is 
given. 

O. I n t r o d u c t i o n  

Organic synthesis is a very important task in organic chemistry. Many problems 
connected with organic synthesis may be solved with the assistance of computers. 
Computer-assisted organic synthesis design is one of them. There are three basic 
tasks in this field: (i) synthesis in the forward direction, (il) retrosynthesis, and (iii) the 
reaction network [1]. The third item has already been discussed [2] in connection 
with reaction mechanisms. An approach to the above first and second items may be 
divided into two relatively independent steps. In the first step, it is necessary to look 
for all possible precursors leading to a given substance. In the second step, it is 
necessary to evaluate the reactivity of reaction paths produced in the first step (i.e. to 
select appropriate reagents and reaction conditions from the kinetic as well as the 
thermodynamic point of view). Both of these steps can be solved subsequently or in 
a parallel way. Two different methods of synthetic precursors/successors (SPSs) 
generation can be found in the literature. In particular, there are the information 
approaches and those based on the logical structure [3] of chemistry (non-empirical 
approaches). 
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The information approaches use broad chemical experience and exploit it in 
a satisfactory manner. However, they are not able to find a new type of SPS which 
has not been included in a more-or-less extensive data base. Typical representatives 
of these programs are LHASA [4] ,SECS [5] and many others [ 6 - 1 1 ] .  

The approaches based on the logical structure of chemistry, or better, on a 
mathematical model, can produce, in general, new types of SPSs not yet described. 

Considerable over-production in the generation of a series of chemically 
"crazy" solutions is the main shortcoming of this category of programs at present. 
These are usually based on the Dugundij-Ugi model [3] (of analogues) This category 
is represented by, for example, the programs of the Munich group [1, t2 ,13] ,  by the 
program TOSCA [14] and by the programs for chemical reactions and reaction types 
generation [ 15,16].  

Most programs used at present do not strictly belong to either of the two 
mentioned categories. There are programs starting from chemical experience, which 
generalize in such a way that their underlying model is used for the deductive prediction 
of organic synthesis [17 - 2 2 ] .  

The prediction of organic synthesis used in out model is based on the mathe- 
matical approach. Two principal notions are involved: (i) valence stares of atoms, and 
(ii) a reaction distance RD [2]. The valence states and their interconversions are an 
empirical basis of the suggested model, whereas the reaction distance serves as a very 
important and effective heuristic for "oriented" generation of SPSs. A reaction center 
of a substrate is attacked in the course of chemical reaction by a reaction center of a 
reagent. At the same time, bonds localized on the reaction center are reorganized. 
These elementary changes are reflected in the neighbourhood of reaction centers and 
give rise to a reorganization of valence electrons. This process will be stopped at a 
moment when all synthon atoms achieve "stable" valence states, corresponding to 
the formation of notable products or intermediates, formally represented by the 
so-called stable synthon [2]. We have divided the process into two sub-processes 
- reorganization of valence electrons at the reaction centers and stabilization of 
the structures formed. 

1. D e f i n i t i o n  o f  t h e  S P S  

Before formulating the definition of the SPS, we first define the notions of 
inside and outside characteristics of the atom x during the change of a synthon; 
henceforth, we define a stable X-neighbourhood. 

D E F I N I T I O N  1 

l_et S(X), S'(X) be two isomeric synthons and let x C X. We define the 
I+ positive and the negative inside characteristic C x (S(X). S (X)) and CIx- (S(X), S'(X)), 
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respectively, of  the atom x involved in the change S(X)  -~ S'(X) as the number of  
created and annihilated bonds of  the atom x to other atoms of  the set X. We 
define the inside characteristic CZx(S(X), S'(X)) of the atom x during the change 
S(X)  -+ S'(X) as CZx(S(X), S' (X)  = CZx+(S(X), S'(X)) + CIx-(S(X), S'(X)). If card 
X = 1, then we define C I ÷ ( s ( x ) , s ' ( x ) ) =  CXx-(S(X),S'(X))= 0. Let us denote 
the number of the created and annihilated outside bonds (i.e. bonds from the outside 
component of the synthon S(X) ,S ' (X) ,  respectively, cf. definition 7 in [2]), by 
the symbol k. If each outside bond of  the atom x in S(X)  is contained in S ' (X)  
too, including multiplicity, then we define the outside characteristic Cff(S(X), S'(X))  
of the atom x assigned to the change S(X)  -+ S'(X) as Cff(S(X), S'(X)) = k; in all 
other cases, we put Cff(S(X), S ' ( X ) ) = - k .  At the same time, we include each 
(a as well as rr) bond separately. 

E X A M P L E  1 

Let S(X)  be -C . . ,~<  
.. / 1 0 -  

and S'(X) be / C . . .  N= . Then we have: 

C~- (S(X), S'(X) = C~)- (S(X), S'(X)) = 1, C~" (S(X), S'(X)) = -2 ,  

C[] (S(X),  S'(X) = C~* (S(X), S'(X)) = O, C(~(S(X), S'(X)) = O, 

Cg(S(X) ,  S'(X) = CEo (S(X), S'(X)) = I. 

T H E O R E M  1 

Let X = { x l , . . .  ,x  n} be a set of  atoms. Let S(X),  S'(X) be two isomeric 
synthons. Let P = (pq) and Q = (qq) be the S-matrices of the inside and outside com- 
ponents of the synthon S(X),  respectively. Let R = (rq) and S = (sq) be the S- 
matrices of the inside and outside components of the synthon S'(X),  respectively 
(cf. definition 7 in [2] ). Let V = (vii) = R - P, W = (wi/)= S - Q, Vii = ( V [ ,  . . . , O k )  , 

wii = (wl ,  . . . ,wi4). Then for each x = x i E X, 1 ~ i ~ n: 

(1) CZx+(S(X), S'(X)) = ~ F(vq), Crx-(S(X), S'(X)) = ~ F(-oq) ,  
1 <~j<~n I ~]<~n 

j ~ i  j v~ i  

c~ ( s (x ) ,  s ' ( x ) )  = Ivql w h e r e F ( t ) =  {0 f°r t > O  
' for t ~ O  

l ~ < j ~ < n  
j ~ i  

(2) 
i i i ' 

c E ( s ( x ) , s , ( x ) )  = w 2 + 2 w  a + 3 w 4 ,  if w} >10 for j = 2 , 3 , 4  
i i i ' i i - I w  4 1 - j w  3 + w  4 1 - 1 w ~  + w  a + w  41 in the other 

C a S e S .  
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Proof 

The assertion (1) is true because the matrix V is the SR-matrix of  the change 
of  the inside component  of  the synthon S ( X )  into the inside component  of  the 
synthon S'(X). Let us prove assertion (2). If w] >1 O, then the outside bonds have 
been created only on the atom x and their total sum is the sum of sinne bonds plus 
twice double bonds plus three times triple bonds created. Let us suppose that at least 
one bond has been annihilated. We can prove the assertion following the idea used 
in [23]. Three cases of  annihilation of a bond can occur. We can describe these 
three cases by the vectors tl, t2, t 3, For annihilation of  a sinne bond, we have 
t t = ( 0 , - 1 , 0 , 0 ) ,  for annihilation of  a double bond t 2 = ( 0 , 1 , - 1 , 0 ) ,  and for 
annihilation of  a triple bond t~ = (0,0,  1, -1) .  The vectors tl, t2, t 3 form the basis of  
the subspace in Æ(4) All vectors Wii a r e  resident in this subspace because the first 
component  of  each Wii is zero. Consequently, we can express each vector wii in the 

v ~ w ~ ) = a ( O , - 1 0 , O ) + b ( O , l  - 1 , 0 )  basis t t, t 2, t 3 as follows: ( w ~ , w ~ , ~ ~  . . . . . . . .  
+ c(0 ,0 ,  1, -1 ) .  Solvingthis equation,we obtain: a = -w~  - wa , 

i Analogically, for creating bonds we can take the vectors - t~ - G  - t 3 .  C = - - W  4 . , , 

Since each vector tt, t2, t 3 describes annihilation of  one bond (o or ~r), we have 

c~(s(x), S'(X)) = - ( l a  l + Ib l  + I c l )  

-- - ( j - w ~  - w~ - ù,~~ + ~-, , ,~ - ,, ,il + I - w 1 1 )  

ji I =-1ù4 +-'; + w l r -  J»,,~ + w ; j -  jùo 

and the assertion is proved. 
The preceding theorem gives a fast method for the calculation of  the inside 

and outside characteristics. 

D E F I N I T I O N  2 

Let A = {A1, . . .  ,An} be a set of  atoms, I = 1 ,  . . ,n . Let S(A),  S'(A) be 
two isomeric synthons and let P = (Pii) be the SR-matrix of the change S(A)  --> S'(A). 
We say that the change S (A) -+ S'(A) satisfies the connectivity condition (furthers the 
condition (*)  only) if there does not exist a decomposition of  the set I = 11 U I2, 
l 1 (3 [2 = 0 ,  I l ,  ]2 :¢: 0 such that Pij = 0 for each i E 11 and ] E 12, respectively, 
pq ¢ 0 for some i, ] Œ I t and Pij =/= 0 for some i, / E I2, and, finally, Pii = 0 if and 
o n l y i f l p {  + . . . +  [p~l = 0 .  

D E F I N I T I O N  3 

Let A = { A I , . . .  ,A n} be a set of  atoms, S(A)  a synthon and S(X)  C S(A). 
A stable X-neighbourhood of  the synthon S(A)  generated by the synthon S'(X)  is 
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the set of all stable synthons S'(A) [2] for which S'(X) C S'(A) and the isomeric 
synthons S(X), S'(X)satisfy the following five conditions: 

(1) RD(S(X), S'(X)) > O. 

(2) The change S(X) -+ S'(X) satisfies the condition (*).  

(3) If X" C X is a set such that card X" > 1 and the change S(X") --* S'(X") 
satisfies the condition (*),  then RD(S(X"), S'(X")) «. card X" + 1. 

(4) CIx(S(X), S'(X)) + [CLx'(S(X), S'(X))I ~< 2, for each x E X. 

(5) cE(s(x) ,  S'(X)) < 2, for each x Œ X. 

The stable X-neighbourhood of the synthon S(A) is the union of all stable 
Xmeighbourhoods of the synthon S(A) generated by all synthons S ' (X)  satisfying 
conditions 1 - 5 .  

T h  e 

(1) 

(2) 

(3) 

chemical interpretation of conditions 1 - 5  from definition 3 is as follows: 

There must be at least one electronic change on the atoms of the reaction 
center. 

The global distribution of electrons assigned to the change S(X) --* S'(X) 
taust be continuous, i.e. a reaction course consisting of two or more 
mutally independent reactions is forbidden. 

This condition minimizes the number of  ESRE [2] which must be realized 
on the atoms from the set X during the formation of  the stable synthon 
S'(X). For example, the reaction of the hypothetical radical 

® ® 

= C ' _ ~ =  -+ >C=N = 
I I 

will be split by condition (3) into two reactions 

õc ' - -S - -~  = c - S -  -* :C=N °= 
t I 

Accordingly, the synthon 
® 

)C=N = 

is not in the stable X-neighbourhood of the synthon 
® - -  

= C ' - N -  
I 

but it is in the stable X-neighbourhood of the synthon 

= C _ ~ _  = 
I 

( i f X  =A = {C,N}). 
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(4) Each of the atoms of the reaction center X can take part maximally in 
two elementary processes on the bonds. 

(15) During the change S(X) --, S'(X) at most one new outside bond at any 
x E X can be formed. 

EXAMPLE 2 

Let us consider the synthons: 

. l  . t  , t  1 / . O  t I ~ . . . l O -  
S ( A ) :  -"C~C-~C - C " _  S~(A): - C - C - C - C -  _ 

l I t " O - H '  I t ~ " - O - H '  

1 I - s  1 I w / / O 1  
- C - C - C  C~O I + H - ,  S;(A): - c - c - c = c = o  S;(A): + 

t I I - -  - -  I I i _ 

I f _ 

S'4(A): # r - ¢ ' ~  4¢-Jr'-Ns- - ' (A) :  - C - - C - C = C = O  s + - O ' - H ,  /,~-,~-. + .-,--,--_~_-. + - O - H ,  S s t - - 

_ } ~ _ I C / I O  - H  t - 
S'6(A): )lOt s , ST(A): - C - C = C - C  + ° l  l l l " I Q - H  ' 

_3 _4C_ 
I I 

S's(A): - C - C - C ; C = O  s- + - O - H ,  S; (A):  - C - C - C = C  - + - O - H .  
t ~ I - t I - -  - 

Let X = {C 1,0S}. Then S(X) is: )C=_O. The elements of the stable X- 
t t 

neighbourhood of the synthon S(A) are the synthons SI(A) , . . .  ,S6(A ). At the 
same time SI(A ) and S'6(A ) are generated by the synthon S'(X) which is - ]C-O- - .  
The synthons S'2(A),... ,S's(A ) are generated by the synthon S'(X): =C=O. The 

t 
synthons S.~(A) . . . .  , S'9(A ) are not elements of the stable X-neighbourhood because 
S'7(A) does not satisfy condition (1) of definition 3, S'8(A ) does not satisfy conditions 
(2) and (5) of  this definition, and the synthon S'9(A ) does not satisfy condition (4) 
(the sum for the atom C 1 is equal to three). An example o f a  synthon which does not 
satisfy condition (3) has been mentioned within the framework of the chemical 
interpretation of the stable X-neighbourhood. 
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THEOREM 2 

Let S(A )and S'(A ) be two isomeric synthons. Then, 

RD(S(A),S'(A))>~[ ~ CIx(S(A),S'(A))]/2 + ~ 
x~A  xEA 

iC~: (S(A  ), S ' (A  ))I . 

Proof of theorem 2 follows directly from the definition of the inside and 
outside characteristics, respectively, because at least one step ESRE is needed for 
formation/annihilation of one bond, and each formed/annihilated inside bond increases 
the inside characteristic of two atoms. 

COROLLARY 

Let S(A), S'(A) be two isomeric synthons, and M and M' their S-matrices, 
respectively. Let P = ( P i j )  = M '  - M. Then, 

Proof 

RD(S(A), S'(A )) >i IPül 
i = l , . . . , n -  1 
j=i+l,...,n 

From theorems 1 and 2, we have' 

RD(S(A),S'(A)) ~ [ Z CI(S(A),S '(A))]/  
x~A 

2 + ~. I C)'(S(A). S'(A))I 
x~A 

>~[ ~ CIx(S(A),S'(A))]/2 = ~, lpql . 
XE A i = l , . . . , n - I  

j=i+l,...,n 

TH EOREM 3 

Let S(A),S'(A) be two isomeric synthons, let X C A, S(X)C S(A) and 
S'(X) C S'(A). Then, 

RD(S(A), S'(A)) >1 RD(S(X), S'(X )). 

Proof 
If k = R D ( S ( X ) , S ' ( X ) ) ,  then we need at least a series of k elementary 

operators for modelling the change S(X) ~ S'(X). Each of  them is localized between 
two atoms. Let k 1 be a number of the operators which are localized only between the 
atoms from the set X. Ler k 2 be a number of operators which are localized between an 
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atom x from X and a virtual atom. Evidentty, k = k, + k 2. Let l = RD(S(A),S'(A)) 
and let l = l, + l 2 where l,. l, are defined in the same way as kl, k 2 but for 
the set A. Then obviously, l, >~k,, 12 +(l, - k , )  >~k 2 and consequently,  

l=I1+l  z >~k,+k2 =k. 

TH I 'OR I'M 4 

Ler S(A), S'(A) be lwo isomeric one-atomic  synthons. Let A = {x} and x 
be an atom of  a main group element.  Ler us suppose that the change of  the folmal 
charge* on the atom x is during the change S ( A ) ~  S'(A) two, maximally, l_,et 
RD(S(A). S'(A )) > 2. Then {C~(S(A) ,  S'(A)){ > 2. 

Plo of 

Let us suppose that RD(S(A), S'(A )) = 3, i.e. three steps of  ESRE have been 

realized on the atom x.  Then the following four cases can set in 

(a) All steps have been redox ~ the changc of the charge is five, minimally. 

This is in contradiction wiIh the assumption. Accordingly, (a) cännot set in. 

(b) Two steps have been ,edox ~ the change of the charge is three, minima}ly. 

This is in contradiction, too, and (b) cannot set in. 

(c) Orte step has been redo-< and 1wo hext steps have been connected with the 
formation/annihilat ion of  bonds. Then there must be {Cff(S(A), S'(A))} ~> 2. Let 

}CLx'(S(A ), S'(A ))} = 2. Then the following three cases can set i n  

( c l )  Cff(S(A), S'(A)) = 2 ~ two new bonds have been formed and one step 

has been redox. If this is an oxidation,  then at least five electrons had to be in the 
valence shell before the process, and there have to be, in this case, two electrons there 
after the process. If the process has been reduction,  then we can derive in the same 

way that there must be five electrons in the valence shell, minimally, after the process, 
and there were two electrons in the core,  in this case, before the process. In both 
cases the change of  the charge has been three, in contradict ion with the assumption. 

(c2) Cff(S(A),S'(A)) = - 2  and one bond has been formed/annihilated,  

respectively, and one step has been redox. Similarly, as above we can show that in 
this case the change of  the charge must be at least three,  too.  

(c3) For the case where Q~:(S(A). S'(A))= - 2  and two bonds have been 
annihilaled and one step has been redox,  we can prove the assertion analogically as 
in (c l ) .  

* l f  the  vcc to r  v o f  t h e  va lencc  s t a t t  o f  t he  a t o m  x is v =  (u, . . . . .  u 4) and  x is a m a i n  g r o u p  

e l e m e n t  f r o m  the  u t h  g r o u p  o f  t he  pc r iod ic  s y s t e m ,  t h c n  we e x p r e s s  t he  f o r m a l  cha rge  c as 

c = n -- (v ,  + v 2 + 2 v ~  + 3 0 4 ) .  
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(d) No step has been redox. Because the increment of RD by each formation/ 
annihilation of a bond is one, then there must be I Cff(S(A), S'(A))I = 3 > 2. 

We can use the above-mentioned considerations also for RD (S(A), S'(A)) > 3. 

COROLLARY 

Let S(A), S'(A) be two isomeric synthons, S(X) C S(A). Let S'(A)be from 
the stable X-neighbourhood of the synthon S(A). Then, for each x E X it holds that 
RD(S({x }), S'( x )) < 2. 

Proof 

Let X'  be a set of all atoms from X on which a change has been realized 
during the process S(A)-* S'(A). For x E X -  X',  the assertion is clear because 
we have for such x: RD(S({x}),S'(x )) = 0. Suppose, on the contrary, that 
RD(S( x ), S'({x})) > 2 for some x E X'. Then theorem 4 implies 

2 < Icf f (s(  x ), s'({x}))l ~< cI(s({x}) ,  s'({x})) + Ic~(s({x}) ,  s'({x}))l, 

which is in contradiction to condition 4 from definition 3. Therefore, the corollary 
is proved. 

The corollary of theorem 4 is important for the restriction of a combinatorial 
explosion during the generation of the stable X-neighbourhood of the synthon S(A) 
since we can take only valence states for which the condition is satisfied for the 
generation. 

THEOREM5 

Let S(A), S'(A) be two isomeric synthons, S(X) c S(A). Let S'(A)be from 
the stable X-neighbourhood of the synthon S(A). Let S'(X) C S'(A) be isomeric 
to S(X). Then, 

~. Cff(S(X), S'(X))I ~< 2. 
x E X  

êroof 

Let X '  be the set of all atoms from X on which changes occurred, in any way, 
during the process S(A) ~ S'(A). Let k = card X' .  From definition 3, theorem 2 and 
theorem 4, we have : 
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k + 1 >~ RD(S(X ' ) ,  S' (X' ) )  

G ( s ( x  ),s '(x') 2 + Z JcE(s(x'),S'(X'~)I" 
x E X '  x E X '  

Further, from condition 2 of definition 3 and from theorem 1, we have. 

Cx(S(X ), S '(X'))  2 >t k -  1. 
X 

Accordingly, 

k + l  ~ > k - l +  ~ E , IG  (S(X  ), S ' (X ' ) ) I ,  
x ~ X '  

and following 

E t 2 >1 Z IG(s(  x ),s'(x'))l. 
x ~ X '  

Since the increment of each atom from the set X - X'  to the sum of the absolute 
values of  the outside characteristics is zero, the assertion is proved. 

COROLLARY 

Let S(A), S'(A) be two isomeric synthons, S(X)  C S(A). Let S'(A) be from 
the stable X-neighbourhood of the synthon S(A). Then only the following possibilities 
can set it: 

(1) There does not exist x E X such that CEx(S(X), S'(X)) 4: O. 

(2) There exists only one x E X such that I cEx(s(x) , s ' (x ) )[  = 1 or 
I Cff(S(X), S'(X))l = 2 ,  a n d  C~(S(X), S'(X)) = 0,  fo r  any y 4: x, 
y ~ X .  

(3) There exist x l , x  2 E X (x 1 4= xz)  such that I < ( S ( X ) ,  S'(X))I = 1 and 
[CEx~(S(X), S'(X))[ = 1. 

DEFINITION 4 

Let A = {A 1 . . . .  ,A n} be a set of atoms, and let S(A), S'(A) be two isomeric 
synthons on the set A. Let S(X)  C S(A). Let M = (mq) and M ' =  (mi}) be the 
S-matrices of the synthons S(A) and S'(A), respectively. Let P = (Pii) be the SR- 
matrix of the change S(A) -+ S'(A). Let S'(A)be an element of the stable X-neighbour- 
hood of  the synthon S(A). Eet I, J b e  two sets defined as follows: J = {1,2 . . . .  , n}, 



J. Koga. A synthon approach: II 101 

I = {i l A i E  X}. We say that S'(A) is the SPS of S(A) with respect to the reaction 
center X if: 

(1) the change S(A) -+ S'(A)satisfies the condition (*),  

(21) C¢x(S(A), S'(A)) + ICEx(S(A), S'(A))I ~ 2, for each x E A, 

(3) if mij = 0 ,  then m~i = 0, for any i E J and j E J - I such that i 4: j, 

(4) let us define the sets 

Yo = X, 

Y1 ={A i E A - X  t h e r e e x i s t s A i E X s u c h t h a t p q ~ : O } ,  

B =  l~)_j U { A j E A - ( Y ) _ I  U X) l the reex i s t sA iE  Yl-1 suchthat 
Pü4: 0} for [ = 2 , 3 , . .  

Since the set A is finite, there must exist a number k such that Yk + 1 = YÆ- 
Then we request that the following implication be satisfied: 

k ~> 1 ~ for each l = 1 , 2 , . .  ,k and for each y E Yt" 

RD(S(X  U I~)_, U {y}), S'(X U Yl- ,  U {y})) 

- R D(S (X  U Yt- ~ ), S'(X u Yt- I )) G1 . 

We denote the set of all SPSs of the synthon S(A)wi th  respect to the reaction 
center X by :f(S(A/X)).  

REMARK 1 

It follows from the corollary of theorem 4 that if S'(A) E ~¢'(S(A/X)), then 
RD(S({x}), S'({x})) ~< 2, for each x E A. 

The chemical interpretation of the conditions from definition 4 is as follows. 

(1) and (2) The chemical meaning of these conditions is identical to the meaning 
of conditions (2) and (4), respectively, from definition 3 for the whole synthon S(A). 

(3) The formation of a new bond is forbidden between an atom outside X and 
an arbitrary atom from A. The formation of this one is realized by the connection of a 
new virtual atom, Condition (3) stops a combinatorial explosion, and it adds to the 
deductive power of the model. It follows also flora condition (3) that substitutions 
and rearrangements must be modelled on two atomic reaction centers, minimally. The 
connection of atoms forbidden by condition (3) can be realized by the physicalization 
of the model. 

(4) This condition is analogous to condition (3) from definition 3. 



102 J. Koga. A synthon approach: H 

EXAMPLE 3 

Let us consider the synthons S(A) and S~(A) , . .  ,S'6(A) from example 2. 
Then only the synthons S I ( A ) , . . ,  S'« (A)are frorn the set ~.¢(S(A/X)). The synthons 
S~(A) and S 6 do not satisfy conditions (1) and (3) of definition 4, respectively (the 
atoms C 4 and O 5 are bonded in S'6(A)and they are not in S(A )). 

It is clear from the definition SPS that the set ~,¢(S(A/X)) is dependent on the 
choice of the reaction center X. By the design of retrosynthesis, it is suitable to 
select as the reaction center the part of the skeleton or functional group which may 
be synthesized in the last step. 

2. S tab i l i za t ion  and  c o n s t r u c t i o n  o f  the  set  ,Yf(S(A/X )) 

We can obtain the set 5f(S(A/X)) in two ways. The first one is to find all 
synthons S'(A) forming the stable X-neighbourhood and to select all synthons satisfy- 
ing the conditions of definition 4. Such a way is very time and memory consuming 
because the stable X-neighbourhood is very large. Therefore, we select the second one, 
i.e. the generative way. 

The choice of the generative way induces also the separation of  the definition 
of the SPS into two parts. The first one is the definition of the stable X-neighbourhood, 
and the second one is the appropriate definition of the SPS. The problem of the 
generation of the synthons S'(X) from definition 3 is closely related to a weil known 
and solved problem in chemistry, the problem of the generation of structures 
(cf. [ 2 4 - 2 7 ] ) .  However, we cannot use these methods for the appropriate generation 
of the whole SPS because, in this case, they are very time consuming. Therefore, we 
introduce the notions of a stabilization and an immersion of synthons. 

DEFINITION 5 

Let A = IA~ . . . . .  A n } be a set of atoms. I_et S (A)and  S'(A)be two isomeric 
synthons. Let M = (mq) ' ' and M = (mq) be the S-matrices of the synthons S(A)and 
S'(A), respectively. Let S(X) C S(A), S'(X) C S'(A). Let I, J be sets defined as 
follows: I = {i lAiE X } ,  J = {1,2 . . . .  ,n}. We say that the synthon S'(A) was 
formed by an immersion of the synthon S'(X)into the synthon S(A)if the equality 

t mq = mq holds for each i E J - I and / E J. 

EXAMPLE 4 

J ~ ~ ö l  S(X) S(A ~ -C-C-C.t_O_H • , . - C . . . _ Ö  - 

t ~ÖI 
S'(A)" - C - C - C . . .  + - ö - H ,  S'(X)" - C ~  + - ö -  . 

I I - -  

The synthon S'(A)has been formed by immersion of S'(X) into S(A). 
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A sufficient condition for the existence of the immersion is formulated by the 
following theorem. 

THEOREM 6 

Let S(A) be a synthon, S(X) C S(A). Let S'(X) be isomeric to S(X) and 
CEx(S(X), S'(X)) >7 0 for each x C X. Then we can immerse S'(X)into S(A). 

B'oof  

Let the assumptions of the theorem be satisfied. Hence, we have that all 
outside bonds on all atoms from the set X are conserved, and we can immerse S'(X) 
into S(A). 

The necessary and sufficient condition for the existence of  the immersion is 
stated in the the following theorem. 

THEOREM 7 

Let A = lA 1 . . . .  ,A n} be a set of atoms, S(A) be a synthon, S(X) C S(A) 
and S'(X) be isomeric to S(X). Let M =(mi i  ) be the S-matrix of  the inside 
component of the synthon S(A) with the diagonal entry mii = ( m { , . . ,  mi4). Let 
P = (Pi/) and Q = (q!/) be the S-matrices of the inside and outside components of the 
synthon S(X) and S (X), respectively, with diagonal entries Pu = ( P [ , ' "  ,Pi4) and 

qa = ( q [ , "  ,qi4) Suppose that the numberings of  the atoms in S(A), S(X) and 
S'(X) are identical. Let us define the set I as I = {i lA i E X}. Then it is possible to 
immerse the synthon S ' (X) in to  S(A) iff the inequalities m ~ -  p~ < q] are satisfied 
for each i E I a n d /  = 2 , 3 , 4 .  

i¥oof 

Theorem 7 follows evidently from the definition of the inside and outside 
components [2] and from definition 5. 

DEFINITION 6 

Let A = {A 1 . . . . .  An} be a set of atoms. Let S(A), S(X) be two synthons, 
S(X) c S(A). Let S'(X) be isomeric to S(X) and satisfying conditions ( 1 ) - ( 5 )  
from definition 4. l_et Q = (qi]) be the S-matrix of  the synthon S(A). I_et us 
define the following sets: I =  {i lA i E X}, C = {x E x ICEx(S (X) ,S ' (X ) )  < 0}, 

Y ={A i C A I A ] ~ X  and there exists i E I  such that A i E C  and qii4=O}, 
E = { / I A i C  y}, K = { k l A k  E C  }, L =IU E. Let M=(rnq) and M'=(m~]) be 
the S-matrices of  the synthons S(X U Y) and S'(X U Y), respectively. Put 

P = (pq) = M ' -  M. 



104 J. Ko?a. A synthon approach. H 

We say that the synthon S'(X U Y) has been created by the stabilization of 
the synthon S'(X)with respect to the synthon S(A)into first neighbourhood if: 

(1) the synthon S'(X U Y)is stable; 

(2) the change S ( X U Y) -+ S' ( X U Y) satisfies the condition (*): 

(3) the inequality 

c»{(s(x u Y, s ' (x  u y)) + I c E ( s ( x  U Y), S'(X U Y))l < 2 

holds for each y E X U Y; 

(4) there exists k E K such that CI k (S(A k U Y), S'(A k U Y)) > O; 

(5) Pi] = 0, for each i E I - K and for each ] E E; 

(6) m ü =  0 ~ m  ü 0 , f o r e a c h i E E U K , ] E E ,  i C ] ;  

(7) the inequality 

RD(S()(  W/Y}), S'(X U {y})) - R D ( S ( X ) ,  S'(X)) ~ 1 

holds for each y E Y. 

If Y = 0 or if there does not exist the synthon S'(X U Y) satisfying condi- 
tions (1) - (7) ,  then we say that there is no possibility of stabilizing the synthon S'(X) 
with respect to the synthon S(A) into first neighbourhood. The stabilization into 
first neighbourhood we shall also call 1-stabilization. 

The chemical interpretation of conditions (1 ) - (7 )  from the definition of 
1-stabilization is as follows. The meaning of condition (1) is clear, conditions (2)and 
(3) have the same meaning as conditions (1) and (2) from definition 4, respectively. 
Condition (3) is important for the algorithm SPS-GEN mentioned later. Without this 
condition, the algorithm would not be finite. Conditions (5) and (6)have a similar 
meaning to condition (3) from definition 4, and condition (7) is analogous to condi- 
tion (4) from definition 4. Generally, the stabilization expresses a projection of 
changes of the reaction center into its nearest neighbourhood. The alm of this approach 
is to obtain a new stable synthon. 

EXAMPLE 5 

Let A = {C ~,C 2 ,C,C,C,N,O,H,H},  X = {C 1,N}. Let S ( A ) b e  

- L  L J L2 L1 
H - N = L -  L -  C -  t5 - L  - u - H .  

I I I -- 

Then S(X) is" 

I 
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and S(X U Y)is: 

_ } 2 I 1  _ 
- N =  + - C - - C - O - .  

l 

Let S ' (X) be: 

-N= + ~C'--- 

Further, let us consider the synthons: 

1 Sl(X u Y): - ~ =  + "~C=C-~- , 

s;(x u Y ) : - S =  + =~'~ + - c ~ i S -  
I II - -  

s;(x u Y): -S= + =~  + >c'--b2, 
L 

s',(x u Y): - S =  + -~=-c'-- + - ~ - ,  
t H 

s;(x u y):  -S: + =ctc'--Q, 
I i 

t S~,(X u Y): - ~ =  + - C - C - O - ,  
l H - -  

i 

s ; (x  u y ) : - S =  + - c - c = O  
t 1 - -  ' 

S'4(X U g)" - N  = + _~2_ + _CEO_ 
I II - -  ' 

S' 6(X U Y): - N :  + -2C=C- + - 0 -  
[ I - -  ' 

s'8(x u Y): -S= + -~e=c-O- 
I I - -  ' 

t Sio(X U Y): - N =  + =C~C1-0 - , 
I - -  

t .,~ - -  S,2(x u Y): =~_(~L + ~ c - o - .  
I 

The synthons S'I(X u Y ) , . . . ,  S'7(X U Y) are the elements of the 1-stabili- 
zation S ' (X)  with respect to S(A). The synthon S'8(X U Y) does not satisfy condi- 
tion (1) from definition 6. the synthon S'9(X U Y) does not satis~ condition (2) 
from definition 6, the synthon S'io(X U Y) does not satisfy condition (3) (the sum 
of the inside and the outside characteristics of the atom C 2 is four), the synthon 
S'll(X U Y) does not satisfy condition (4), and the synthon S'12(X U Y) does not 
satisfy conditions (5) and (6). 

The algorithms SPS-GEN and STAB 

Notations: A = {A 1 . . . . .  An}, S(A) is a synthon, S ( X ) C  S(A), Y is the 
set defined analogously as in definition 6. 

The input structures are S(A) and S(X) for the algorithm SPS-GEN, and 
S(A) and S ' (X)  for the algorithm STAB, respectively. The output  is the set N and M, 
respectively. The algorithm STAB is recursive. 

The algorithm SPS-GEN 

Step 1 (initialization). Let the set M be a set of all synthons S'(X) isomeric to S(X) 
and satisfying conditions (1 ) - (5 )  from definition 3. Let N = @. 
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Step 2. For each synthon S'(X) from M, do step 3. 

Step 3. STAB (S(A ), S'(X), At). 

Step 4. The end of the algorithm. 

The algorithm STAB 

Step 1. If it is possible to iznmerse S'(X) into S(A) by formation S'(A) then do this 
immersion and put N = At U S'(A). 

Step 2. Define the set Y. If Y = 0, then go to step 6. 

Step 3. Let C be a set of all synthons S'(X U Y) which have been formed by the 
1-stabilization of the synthon S'(X) with respect to the synthon S(A). If 
C = 0,  then go to step 6. 

Step 4. For each synthon S'(X U Y) from the set C do step 5. 

Step 5. Let Y' be a set of  all atoms y E Y on which any change has been realized 
during the isomerization S(X U Y) -+ S'(X U Y). Put X = X U Y' and do 
STAB (S(A), S'(X), At). 

Step 6. The end of the algorithm. 

Schematically, we can demonstrate the work of the algorithms SPS-GEN and 
STAB as follows: 

S (XuY') 

Fig. 1. 

THEOREM 8 

Let A = {A 1 . . . .  ,A n } be a set of atoms. Let S(A) be a synthon on the set A, 
S(X) C S(A). Let N be a set of the results of algorithm SPS-GEN by input S(A) and 
S(X). Then N = J'(S(A/X)). 
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~ o o f  

Let the sets L J b e  definedas follows:J = { 1 , 2 , . . , n } ,  Z = {i lA iE X}. 

(A) Let S'(A) E N =~ S'(X) satisfy conditions (1 ) - (5 )  of definition 3 and at 
the same time S' (Z)C £'(A). S'(A) is stable because it has been formed by the 
stabilization of the synthon S'(X). Accordingly, S'(A) is an element of the stable 
X-neighbourhood of the synthon S(A). We show that conditions (1 ) - (4 )  from 
definition 4 are satisfied. Conditions (1) and (2) follow from conditions (2) and (3) 
of  definition 6 and from the mechanism of algorithm STAB. Now we verify 
condition (3). We distinguish the foUowing cases: 

(a) if Y = 0, then it ispossible to immerse S'(X)into S(A)(since S'(A) E N) 
and the condition is satisfied from the definition of the immersion; 

(b) if Y 4: (h, then we have three possibilities: 

(bl)  it is possible to immerse S'(X) into S(A) and the condition is 
satisfied from the definition of the immersion; 

(b2) if A = X tJ y, then the condition is satisfied from condit{ons (5) 
and (6) of definition 6; 

(b3) if A D X U Y, then the condition is satisfied (cf. (bl))  in the 
synthon S'(X U Y') (Y' is the set defined in algorithm STAB)and 
by its further stabilization, we obtain one of the cases (a), (b l)  
(b2). 

In any case, condition (3) is satisfied. Now we verify condition (4). Let us 
consider the set Y' which is defined in algorithm STAB during the /th immersion. 
Then Y' = Yt - Yt- x, where l = 1,2 . . . .  , k - 1, k is the maximal level of  the 
immersion of algorithm STAB by the generation of S'(A), and the sets Yt are defined 
by condition (4) of  definition 4. The equality is satisfied with respect to the definition 
of the set Y in definition 6, and with respect to the validity of condition (3) of  defini- 
tion 4. From condition (7) of  definition 6 and from condition (5) of algorithm STAB, 
we have: RD(S(X" U {y}), S'(X" tA {y})) - RD(S(X"), S'(X")) ~< 1 for each 
y E Y where the set X" answers the function of the set X during t h e / t h  immersion 
of algorithm STAB. Since Y' C Y, this inequality is satisfied also for each y E Y'. 
There follows from the mechanism of algorithm STAB that 

1 

x " :  x u ( Y ~ - I  - Y i - 2 )  : x U YI . 
i = 2  

After the introduction of X" into the inequality mentioned above, we have the 
assertion. Accordingly, S'(A ) E ~,f( S (A/X)). 

(B) Let S'(A) E 5t'(S(A/X)) =~ S'(A) be an element of the stable X-neigh- 
bourhood of the synthort S(A) generated by the synthon S'(X), and let it satisfy 
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conditions (1 ) - (4 )  of definition 4. Then there exist two possibilities: 

(i) S'(A) is formed by the immersion of S'(X) into S(A) and, accordingly, it 
is generated in step 1 of algorithm STAB. Then S'(A) E N. 

(il) S'(A)is not formed by the immersion of S'(X) into S(A) ~ there exists a 
set Z, A D Z D X such that S'(A) is formed by the immersion of S ' (Z)  into S(A). 
Let us consider minimal Z with this property. Then there exist two possibilities, 
Z = X U Y' or Z D X tO y '  (from the definition of Y' in step 5 ofalgorithm STAB 
there cannot be Z C X to Y'). 

(iil) Let Z = X U Y'. We show that S'(Z) satisfies the conditions of the 
stabilization (definition 6). Conditions (1), (2), (3), (7) follow directly fiom defini- 
tion 4. We show conditions (4), (5). (6). First we prove condition (4) by contra- 
diction. Suppose that there does not exist k E K such that Cft,(S(Y' to {Ak} ), 

' '  ' E I ' S ( Y  U { A k } ) > 0 ,  then for each k K: C~k(S(Y U{Ak}) ,S (Y  to {Ak})=0  
and S'(A) is formed by the immersion of S'(X) into S(A), which is case (i), a contra- 
diction. Consequently. condition (41) is satisfied. Now we show (5). Suppose that 
i E I - K and ] E E such that Pij 4= O. It follows from the definition of the sets I, K 
that there cannot exist ] E J (land / E E) such that Pi] ¢k O. If Cffi(S(X), S'(X )) = 1, 
then it means that one new bond has been formed, which is in contradiction with 
the requirement of condition (3) of definition 4. The Cffi(S(X ) S ' (X))>1 
during 1-stabilization is impossible because of condition (5) of definition 3. During 
the following stabilizations, condition (1) of definition 4 must be satisfied, so 
Cffi(S(X), S'(X)) ~< 1 must hold. The same follows from condition (3). Accordingly, 
condition (5) is satisfied. Condition (6) follows directly from condition (3) of defini- 
tion 3. Accordingly, S'(A) is formed by the immersion of S'(Z) into S(A) and 
S ' (Z)  is formed by the stabilization of the S'(X) with respect to S(A), and S'(A) E N. 

(il2) Let Z D Z ' = X U  Yi, where Y; = Y' and Y' is defined in the first 
way through algorithm STAB. We show that S'(X U Y') is formed by the 1-stabiliza- 
tion of the synthon S'(X) with respect to the synthon S(A), i.e. we show that condi- 
tions (1 ) - (7 )  from definition 6 are satisfied. The first condition is satisfied because 
each subsynthon of the stable synthon is stable. Condition (2) follows automatically 
from definition 4 (condition (2)). Condition (3) follows from condition (2) of defini- 
tion 3, and further from condition (1) of  definition 4 and from the construction of 
the set Y' in algorithm STAB. Condition (4) we can show analogically, as in case (iil). 
In the same way, we can show condition (5). Condition (6) follows from condition (3) 
of definition 4, and condition (7) follows from condition (4) in definition 4 (because 
there is Y '=  Y). Accordingly, the synthon S'(X U Y') is formed by the 1-stabiliza- 
tion of the synthon S'(X) with respect to S(A), and S'(X U Y') is the product of 
the first way through algorithm STAB. Further, let Y/ (l = 1,2 . . . .  , k - 1) denote 
the set Y' defined in the /th way through algorithm STAB. It follows from condi- 
tion (1) of  definition 4 that there exists l such that 
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l 

z=xuuß' .  
i = I  

With the help of the same consideration as that used above, we show that the synthon 

l - 1  
s'( (x u u y/) u h')  

i = 1  

is formed by the 1-stabilization of the synthon 

1 - 1  
s ' ( xu  u h')  

i =1  

with respect to the synthon S(A). From this, we have that S'(Z) has been formed 
by the stabilization of S'(X) with respect to S(A), and because S'(A) is fornaed 
by the immersion of S'(Z) into S(A), it holds that S'(A) E N and the theorem is 
proved. 

3. C o n s t r u c t i o n  o f  the  r e d u c e d  set  o f  SPS 

In practical applications, it is very important to determine not only the atoms 
of the reaction center but also the atoms which we want to exclude from the chemical 
process (e.g. the skeleton creating atoms). The conditions of the conservation of 
the skëleton or its part or of a functional group is very important in, for example, 
the synthesis design of biologically active compounds. Therefore, we introduce the 
notion of the set of all SPSs of the synthon S(A) with respect to the synthon S(X) 
reduced by the synthon S(X).  

DEFINITION 7 

Let A = {A 1 . . . . .  A n }. Let S(X) and s ( ) Õ  be its subsynthons, respectively. Let 
t X A Ä; = O. Let S'(A) C ~,J(S(A/X). Let M = (mg/) and M'  = (mq) be the S-matrices 

of  the synthons S(A)and S'(A). Let P =  ( p q ) = M ' - M .  Let I =  {i lA iE X" or 
there exists j such that Aj E R and mq 4= O} I = {i lA i E ,g}. We call the set 

Yt(S(A/X/X) = {S'(A) E ~.f(S(A/X))I pq = 0 for each i E I ' ,  j E I} 

the set of all SPSs of  the synthon S(A) with respect to the reaction center S(X) 
reduced by the subsynthon S(,Y) (denoted as (.f(S(A/X/X)). 
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EXAMPLE 6 

Let us consider the same synthon S(A) and the same set X as in example 2. 
Let A 7 = { C 2 . C 3 , C 4 }. Then only the synthon S I (A) is an element of :f(S(A/X/X)).  

TH [';OR EM 9 

Let S(A) be a synthon and S(X)  its subsynthon. Let A D Z D X. Let 
S'(A) E :J(S(A/X)), I = {i lA i c Z }. Let P = (pii) be the SR-matrix of the isomeri- 
zation S(A) -+ S'(A). Suppose that the isomerization S(Z)  -+ S'(Z) satisfies the 
condition (~,). Then S'(Z) E ~,f(S(Z/X)). 

Proof  

S'(Z) is an element of the stable X-neighbourhood of the synthon S(Z)  
because S'(A) is an element of the stable X-neighbourhood of the synthon S(A). 
Therefore, the synthons S(X)  and S'(X) satisfy conditions ( 1 ) - ( 5 )  from defini- 
tion 3. We show conditions ( 1 ) - ( 4 )  of definition 4 for S'(Z). Condition (1) is 
formulated in the assumptions. Condition (2) follows from the fact that S'(Z) C S'(A), 
Z C A, and condition (2) is satisfied for each x E A and, consequently, for each 
x E Z. We can show condition (3) analogically as for condition (2). Condition (4) 
follows from the satisfaction of the condition (*)  for the change S(Z)  ~ S'(Z) and 
from the satisfaction of condition (4) for the isomerization of the whole synthon, 
and the theorem is proved. 

THEOREM 10 

Let S(X)  and S() ( )  be two subsynthons of the synthon S(A) such that 
X n )7 = 0. If S"(A) E :¢(S(A/X/X)) then there exists S'(A - )7) E ,cf(S(A - X/X)) 
such that S"(A) is formed by the immersion of S'(A - )7) into S(A). 

Pro of 

If S " ( A ) E  J'(S(A/X/X)) then S " ( A ) E  5¢'(S(A/X)) and PO = 0 for each 
i,/Œ I (the notation is the same as in definition 5). Let us put Z = A - . ~ .  
Since A = A - ) T u X = Z U ; ~ ,  the atoms of the set .~ are without a change, 
and the isomerization S(A) -+ S'(A) satisfies the condition (~), the isomerization 
S(Z)-+ S' (Z)  taust also satisfy the condition (~). Then from theorem 4 we have 
S"(Z) E ~f(S(Z/X)) = ~i~(S(A - )7/X)). Since Pij = 0 for each i,j C I, and since 
S"(A) E : f(S(A/X))  and, therefore, condition (3) from definition 4 is satisfied, 
it is possible to immerse the synthon S"(Z)  into S(A) by the formation of  S"(A). 
Accordingly, we can put S'(A - )7) = S" (Z)  = S"(A - .,~) and the theorem is proved. 

The assertion of theorem 10 is very important for the convergent generation 
of  !~(S(A/X/)7)) because it follows from this that we need not generate the whole 

~,f(S('A/X)) but only c.f(S(A - )7/X)). 
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Now, let us formulate algorithm SPS-GEN-1. It will generate the SPS of the 
synthon S(A) with respect to the synthon S(X)  reduced by the synthon S(,~), The 
input structures are S(A), S(X)  and S(X),  where A D X, A D CV, X N ,~ = O. The 
output is the set of results &L 

The algorithm SPS-GEN-1 

Step t. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Initialization: 6~ = 0. 

Do algorithm SPS-GEN for the synthons S(A - )(), S(X). Let the results of 
algorithm SPS-GEN (i.e. the synthons S'(A - X)) be saved into the set IV. 

For each synthon S'(A - X) from the set N, do step 4. 

If it is possible to immerse the synthon S'(A - ~f) into S(A), then do this 
immersion (the synthon S'(A)is formed)and put ~t = 6~ U S'(A ). 

The end of the algorithm. 

T H E O R E M  1 1 

Let A = {A 1 . . . .  ,A n } be a set of atoms, and S(X)  and S(X)  be two sub- 
synthons of S(A) such that X A ~- = 0. Let ~ denote the set of the results of  
algorithm SPS-GEN-1 by input S(A), S(X), S(~;). Then: 

a = 

Proof 

(a) Let S'(A) E ~:f(S(A/X/X)). We have, from theorem 10, that there exists 
the synthon S'(A - X) E :J(S(A - ~/X))  such that S'(A) is formed by the immersion 
of S'(A - ~g) into S(A), i.e. in step 4 of algorithm SPS-GEN-1. From theorem 9, we 
have that the synthon S'(A - ) ~ )  is formed by algorithm SPS-GEN (by the input 
S(A - AT) and S(X)) i.e. in step 2 of algorithm SPS-GEN-1. Accordingly, S'(A) E (L 

(b) If S'(A) E (t, then S'(A) is formed by the immersion of the synthon 
S'(A - ,Y[), generated by algorithm SPS-GEN (by input S(A - ,g), S(X)), into S(A ) 
and, consequently, S'(A) E ~J:(S(A/X)) (because (A - )()  C A), If P = (Pij) is the 
SR-matrix of the isomerization S(A)-+ S'(A), and I and I' are the sets defined 
analogically as in definition 5, then it follows from the definition of the immersion 
that Pij = 0 for each i E I', j E I. Consequently, S'(A) E :!J~(S(A/X/,~)) and the 
assertion is proved. 

It follows from theorem 11 that algorithm SPS-GEN-1 may be used for the 
generation of the whole set (.f(S(A/X/f5)). 

The following theorem introduces an important property of the set 
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THEORI M l 2 

Let S ( X )  and S()()  be two subsynthons of the synthon S ( A )  such that 
X c~ )~ = 0, X-' C )(. Then: 

(1) :f'(S(A/X)) 

(2) ! t (S (A/AT)( ' ) )  ~ : f ( S ( A / X / 2 ) ) .  

Proof 

( ])  

(2) 

If S ' ( A ) E S : ( S ( A / X / X ) ) ,  then from definition 7 we have that 
S'(A) c 

Let S ' ( A ) E  ~. f (S(A/X/Z)) .  Let M and M' be the S-matrices of the 
synthons S ( A )  and S'(A), respectively. Let P = ( p / j ) = M ' - M .  Let 
I, J, I ' ,  J '  be sets defined as follows: 

I = { i t A i E ~7 Or there exists ] such that A i E ,~ and rail 4 : 0  }. 
= {i 1A t E X'  or there exists ]~uch that A / E  ,~' and m 6 4: 0}, 

Jll ' = I i J A i C X }, J '  = { i l A i E }. Evidently , J C I, J '  C I ' .  

From the definition, we have pq = 0 for each i C I', / E I and. therefore, 
Pii = 0 for each i E J', j C J. 

4. An order of SPS 

We introduce, to improve tile regulation of changes which are accompanied 
by a splitting of the skeleton, the notion of tile order of SPS, 

DEFINITION 9 

Let S ( A )  be a synthon, S ( X ) C  S(A), S ' ( A ) ~  ~,£(S(A/X)). We define the 
order N of the synthon S'(A) with respect to S(A) as follows: 

N = ( ( k +  1) + 4 ) +  1, 

where 

k = Z R D ( S ( I Y } ) , S ' ( t y } ) )  
y E A - X  

and the operation + denotes the so-called integer division. 

The order of SPS is a measure of changes of valence states of atoms out of  the 
set X. 
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EXAMPI..I .  11 
1 2 

Let us consider the Kekulé structure of  benzene 6 ~ a  

Here. A = {C 1 C 6 } Let X = {C 1 ,C 2 } s « 

21 3 I 41 s l  
(a) An SPSof the  order 1 is. for example, .6C-C! + ('-~(" ( ' = C  

(b) An SPS of the order 2 is, for example, -PC-C ! + ?C3C-4(72(~" 

4 C C s (c) An SPSof the  order 3 is, for example, A t=c! - -  + 5 C - C  3- + = -- 

Intuitively, the order of the SPS is connected with the length of the reaction 
path. However, this connection is not always linearly proportional. If we study, for 
example, the tele-elimination reaction S(A) -+ S'(A ): 

I 
-C-C=C-C*=_Ct  C=C_C= -+ _C=C_C=C*=C~_C _C=C = 

I I I I I I I I I I I 

and we denote X = {C*,C*/, then the order of S'(A) with respect to S(A) is  two 
and RD(S(A),  S'(A)) = 9. However, in example 1 l(c), the order of the SPS is equal 
to three and RD(S(A),  S'(A)) = 6. The order is added fast if the skeleton is split, 
and it is added slowly if, for example, an electrocyclic reaction takes place. Upper 
bounds of the order of SPS are formulated by the following theorem. 

T t t E O R E M  13 

l_et S(A) be a synthon, S(X)  C S(A). Let Nma x denote the maximal order 
of  S'(A) @ 5f(S(A/X )) with respect to S(A ), Then  

Nma x ~< ((2(card A - card X) + 1) + 4) + 1. 

Proof 

This follows immediately from the definition of the order of SPS, from condi- 
tion ( 2 ) o f  definition 4, and from the corollary of theorem 4. 

5. C o n c l u s i o n s  

The purpose of this and previous [2] communications is to form a mathe- 
matical model of chemical reality which is potentially applicable as a basis for 
computer-assisted organic synthesis design. The principal notions and concepts defined 
in the model correspond to the actions or thoughts of a synthesizing chemist. There- 
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fore, the model is defined for synthons and not only for whole molecules, and the 
chelnical distance [3,28] is subs t i lmed by a rauch more appropriate  reaction distance. 

The idea of  the virtual a toms considerably increases the deductive power of  the model .  

The ability of  the model to find ESRE enables us to use the theory  for an exJlaustive 

construct ion of  reaction mechanisms. 
The ability of  the model to serve as a basis for the format ion  of  compute r  

progralns for organic synthesis design was verified during the implementa t ion  of  the 

program for the generation of  the set o f  all SPSs [29] .  
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